Download Algebraische Zahlentheorie (Springer-Lehrbuch Masterclass) by Jürgen Neukirch PDF

By Jürgen Neukirch

Algebraische Zahlentheorie: eine der traditionsreichsten und aktuellsten Grunddisziplinen der Mathematik. Das vorliegende Buch schildert ausführlich Grundlagen und Höhepunkte. Konkret, glossy und in vielen Teilen neu. Neu: Theorie der Ordnungen. Plus: die geometrische Neubegründung der Theorie der algebraischen Zahlkörper durch die "Riemann-Roch-Theorie" vom "Arakelovschen Standpunkt", die bis hin zum "Grothendieck-Riemann-Roch-Theorem" führt.

Show description

Read or Download Algebraische Zahlentheorie (Springer-Lehrbuch Masterclass) PDF

Similar number theory books


This can be a systematic account of the multiplicative constitution of integers, from the probabilistic perspective. The authors are specially curious about the distribution of the divisors, that's as primary and significant because the additive constitution of the integers, and but in the past has not often been mentioned open air of the learn literature.

Automorphic Representations and L-Functions for the General Linear Group: Volume 2

This graduate-level textbook offers an effortless exposition of the idea of automorphic representations and L-functions for the overall linear team in an adelic environment. Definitions are stored to a minimal and repeated while reintroduced in order that the publication is obtainable from any access aspect, and without earlier wisdom of illustration thought.

Extra resources for Algebraische Zahlentheorie (Springer-Lehrbuch Masterclass)

Example text

6 (1978) 532-540; MR 58 #31007b. L. A. Bunimovich, On the ergodic properties of nowhere dispersing billiards, Commun. Math. Phys. 65 (1979) 295-312; MR 80h:58037. H. T. Croft & H. P. F. Swinnerton-Dyer, On the Steinhaus billiard table problem, Proc. Cambridge Philos. Soc. 59 (1963) 37-41; MR 26 #2925. D. W. De Temple & J. M. Robertson, A billiard path characterization of regular polygons, Math. Mag. 54 (1981) 73-75; MR 84g:52002. Unsolved Problems in Geometry 18 D. W. De Temple & J. M. Robertson, Convex curves with periodic billiard polygons, Math.

A related problem appears in Melzak's collection, where it is required to find the shortest path whose convex hull approximates a convex surface to within e. Z. A. Melzak, Problems connected with convexity, Problem 39, Canad. Math. Bull. 8 (1965) 565-573; MR 33 #4781. A30. The shortest curve cutting all the lines through a disk. Croft considered the problem of finding the shortest curve in the plane that cuts every chord (produced both ways) of a fixed disk K of unit radius.

Bieri, Mitteilung zum Problem eines konvexen Extremalkorpers, Arch. Math. (Basel) 1 (1949) 462-463; MR ll, 127. H. Groemer, Eine neue Ungleichung fiir konvexe Korper, Math. Z. 86 (1985) 361-364. H. Hadwiger, P. Glur & H. Bieri, Die symmetrische Kugelzone als extremale Rotationskorper, Experientia 4 (1948) 304-305; MR 10, 141. H. Hadwiger, Elementare Studie iiber konvexe Rotationskorper, Mat h. N achr. 2 (1949) 114-123; MR 11,127. H. Hadwiger, [Had], Section 28. H. Hadwiger, Notiz fiir fehlenden Ungleichung in der Theorie der konvexen Korper, Elem.

Download PDF sample

Rated 4.40 of 5 – based on 35 votes